

Binary Program Rewriting with Diablo

Bjorn De Sutter Ghent University

PLDI06, June 06, 2006

Credits

DIABLO

- Dominique Chanet
- Ludo Van Put
- Matias Madou
- Bertrand Anckaert
- Koen De Bosschere

Overview

- Some background
- Diablo
 - Extensibility
 - Retargetability
 - Reliability

Overview

- INTRODUCTION (45 min)
- DATASTRUCTURES (1 hr)
- ANALYSES AND TRANSFORMATIONS (45 min)
- BACKENDS (30 min)

Additional optimization opportunities?

p. 8

Results (Squeeze++)

Code size reduction obtained with optimization and code abstraction

[De Sutter, De Bus and De Bosschere, ACM TOPLAS, Sept 2005]

Only for the Alpha architecture.
Only for compaction/optimization
Small change implies days of debugging

Not retargetable Not extensible Not reliable

Other rewriters?

Alto's Evolution

p. 13

static binary rewriting is useful...

Applications

- Optimization, compaction
- Instrumentation
- Obfuscation
- Program understanding, visualisation
- Debugging
- ...

but it is a bit problematic...

Problems

- Not retargetable
- Not extensible
- Not reliable

Overview

- Some background
- Diablo
 - Extensibility
 - Retargetability
 - Reliability

Pre-link or post-link?

Pre-link

- + More meta information
 - = more aggressive transformations
- No program overview

Link - time

- + More meta information
- + Whole-program overview
- More implementation work

Post-link

- Less meta information
 - = more conservative transformations
- + Whole-program overview

Extensibility – The problem

Operation at different levels

Extensibility

Diablo Application optimization and compaction frontend LCTES'04 FIT Instrumentation frontend PASTE'04 Stilo Steganography frontend ICISC'04 kDiablo Linux kernel specialization frontend LCTES'05 Lancet Interactive binary program editor PASTE'05 Loco Interactive program obfuscator PEPM'05

Overview

- Some background
- Diablo
 - Extensibility
 - Retargetability
 - Reliability

Operation at different levels

Retargeting multiple ROF & Linkers

lavout code

Department

Electronics and

Engineel

Major implemented backends

ARM Diablo, FIT, kDiablo, Lancet LCTES'04 x86 Diablo, FIT, Stilo, kDiablo, Lancet, Loco LCTES'05 **IA64** Diablo Europar'04 MIPS32 Diablo **ESA'04 Alpha** Diablo, FIT

Overview

- Some background
- Diablo
 - Extensibility
 - Retargetability
 - Reliability

CFG Construction

Disassembling

Potential problems:

- Differentiate data from code
- Detect self-modifying code
- Detect unrewritable code

Solutions:

- Section information
- Symbols annotate data in code (ARM ABI)
- Self-modifying code in data: no problem at this point
- True self-modifying code: look at system calls and protection

Conservatively modelling control flow

Potential problems:

- Indirect control flow transfers
- Code that is treated as data
- Unrealizable paths (procedures)

Solutions:

- Use relocation information: identifies computable addresses
- Use pattern matching: identifies known address computations
- Use knowledge on compiler-generated code

Detecting Data

```
$code
      0x0080:
              mov r2, 0x0a0
      0x0084: cmp r1, $0
      0x0088: jl 0x0b4
      0x008c: cmp r1, 5
      0x0090: jge 0x0b4
      0x0094: add r1, r2, r1
      0x0098: ldr r1, [r1]
      0x009c:
             jmp r1
$data
      0x00a0: 0x00000120
      0x00a4:
             0x0000012c
      0x00a8: 0x000000d0
      0x00ac: 0x00000248
      0x00b0: 0x00000210
$code 0x00b4: mov r3, r5
```

Solution:

add mapping symbols

Detecting Control Flow Targets

```
$code
       0x0080:
                mov r2, 0x0a0
       0x0084:
               cmp r1, $0
                                    Direct control flow:
       0x0088: j1 0x0b4
                                      trivial
       0x008c: cmp r1, 5
       0x0090: jge 0x0b4
                                    Indirect control flow:
       0x0094: add r1, r2, r1
                                      only to code-addresses
       0x0098:
                ldr r1, [r1]
                                      that are targets of
       0x009c:
               jmp r1
                                      relocations!
$data
       0x00a0: 0x00000120-
       0x00a4:
               0x0000012c
       0x00a8: 0x000000d0-
                                    Problem:
       0x00ac: 0x00000248
                                      what about unrelocated
       0x00b0: 0x00000210
                                      computations on code-
$code
       0x00b4:
                                      addresses?
               mov r3, r5 ←
       0x00d0: add r4, r6, r6
       0x0120: ldr r4, [r5]
```


Control Flow: Pattern Matching

```
$code
       0x0080:
                mov r2, 0x0a0
       0x0084:
               cmp r1, $0
                                    Use pattern matching to
       0x0088: j1 0x0b4
                                    improve accuracy of
       0x008c: cmp r1, 5
                                    control flow graph:
       0x0090: jge 0x0b4
                                      disallow computations on
       0x0094: add r1, r2, r1
                                      code-addresses that are
       0x0098:
                ldr r1, [r1]
                                      not part of a recognized
                                      pattern
       0x009c:
                jmp r1
$data
       0x00a0: 0x00000120-
       0x00a4:
                0x0000012c
       0x00a8: 0x000000d0
       0x00ac: 0x00000248
       0x00b0: 0x00000210
$code
       0x00b4:
              mov r3, r5 ←
       0x00d0: add r4, r6, r6
       0x0120: ldr r4, [r5]
```


Pattern Matching: example

Pattern Matching: example 2

```
$code
       0x0080:
                  mov r2, 0x09c
                                       switch statement 2:
        0x0084: cmp r1, $0
                                         address table is replaced
        0x0088: j1 0x0b4
                                         by a series of direct
        0x008c: cmp r1, $5
                                         jumps to the switch
        0x0090: jge 0x0b4
                                         cases.
        0x0094: add r1, r2, r1
        0x0098:
                 Jimp r1
                                       unrecognized pattern!
        0x009c://yjmp 0x0120
        0x00a0: \sqrt[4]{\text{jmp}} \ 0x012c
                                       Solution:
                  jmp 0x00d0
        0x00a4:/\
                                         add pattern to Diablo
                  jmp 0x0248
        0x00a8:\
                  jmp 0x0210
        0x00ac:
        0x00b0:
                  nop
        0x00b4: mov r3, r5
        0x00d0:
                  add r4, r6, r6
        0x0120:
                  ldr r4, [r5]
```


p. 33

Procedure Calls and Returns

ARM indirect procedure call:

```
mov r14, pc
mov pc, r2
```

ARM procedure return:

```
mov pc, r14
or
ldr pc, [r13], #4
or
ldmia r13, {r4-r7,r15}!
```

Function calls and returns are often just "special" indirect jumps:

not recognizing them makes the flow graph much too conservative

Solution:

use pattern matching to recognize them:

- rely on ABI
- rely on compiler conventions

Data flow analyses

Stack analysis

Problem

- Difficult to analyse
- Necessary to improve precision
- Especially for C++-like languages (calls through function pointers)

Solution

- rely on calling-conventions
- use symbol information
- use mapping symbols
- use source code information
- use stack unwind information

p. 36

Calling convention adherence

```
A.c
extern int B(int x);
int A(int x)
        return B(x);
```

```
B.c
int B(int x)
        return x * 2;
int C(int x)
        return B(x)^2;
```

B is unknown

call to B respects calling conventions

C is known but A is unknown
B respects
calling convention

p. 37

Calling convention adherence

```
B.c
static int B(int x)
        return x * 2;
int C(int x)
        return B(x)^2;
```

C is known no unknown callers of B

B does not need to respect calling convention

Calling convention adherence

```
A.c
extern int B(int x);
int A(int x)
       int y;
       asm("
          movl %ecx, x
          call B
          movl y, %ecx
       return y;
```

```
B.s
B:
shl %ecx, #1
ret
```

even though B is global, the programmer has control over all call sites

B does not need to adhere to calling conventions

solution:

identify assembler code through *mapping symbols* (for inline assembler) and object file header info

Relocation

Producing binary program again

Problem

- How to write a correct program?
- How to layout data?
- How to update pointers?
- How to update addresses?

Observation

 Most "strange" requirements come from linker manipulations

Solution

- make relocations expressive
- make relocations first class objects
- let transformations update relocations
- use linker scripts

Overview

- Some background
- Diablo
 - Extensibility
 - Retargetability
 - Reliability (no, really now)

Reliability The Real
Problem

Limit imprecision to some parts

Limit imprecision to some parts

What program parts?

- Sections from object files
 - only refer to each other via symbols
 - special code addresses identified by relocations
 - extend relocations where necessary
 - no relaxation
 - annotate PIC code with relocations if necessary
 - mark data
 - •

When/why does this work?

- Under separate compilation
 - Partial-separate compilation
 - Compiler-generated code only, not manually-written assembler
- Compiler needs to maintain conventions
- Assembly writers do not know compilergenerated code
 - Because multiple compiler versions are available
- Whenever imprecision could become viral, the linker (rewriter) is informed!

