UNIVERSITEIT
GENT

Binary Program Rewriting
with Diablo

Bjorn De Sutter
Ghent University

. PLDIO6 , June 06, 2006
PIABL O S

|
IPEAC
(O VIIPNITOI ARCHITECTURE
Binary Program Rewriting with Diablo — Bjorn De Sutter — 2006-6-11

p-1
Engineering Sciences Faculty — Electronics and Information Systems Department

Credits

UMEEETHEIT
* Bruno De Bus

* Dominique Chanet PA//’/S

 Ludo Van Put
» Matias Madou FMO

 Bertrand Anckaert
e Koen De Bosschere m

H .
DEAC
/r/ P -

%1 / 5 COMPILATION W@z IIE@IS
),/ UNIVERSITEIT

7 GENT

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 2
Engineering Sciences Faculty — Electronics and Information Systems Department

Overview

* Some background

* Diablo
— Extensibility
— Retargetability
— Reliability

AL O

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 3

Overview

» INTRODUCTION (45 min)
+ DATASTRUCTURES (1 hr)
eveyapey 11 ANALYSES AND
a8/ TRANSFORMATIONS (45
min)
+ BACKENDS (30 min)

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 4
Engineering Sciences Faculty — Electronics and Information Systems Department

Program Development

L) Source code

compiler

assembler

Binary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11 p. >
Engineering Sciences Faculty — Electronics and Information Systems Department

lin N
Linking
/
N
O)
start
print
stop
-/
/
ﬁﬁﬁ
p. 6

Binary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

Program Development

L) Source code

compiler

Squeeze++

[’—’%

assembler

Binary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11 p.7
Engineering Sciences Faculty — Electronics and Information Systems Department

Additional optimization
opportunities?

-~

- Squeeze++

Binary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11 p. 8
Engineering Sciences Faculty — Electronics and Information Systems Department

Results (Squeeze++)

Code size reduction obtained with optimization and code abstraction

media ~ int

[De Sutter, De Bus and De Bosschere, ACM TOPLAS, Sept 2005]

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p-9
Engineering Sciences Faculty — Electronics and Information Systems Department

Problems

- Squeeze++

linker

g
Only for the Alpha architecture. Not retargetable
Not extensible

Not reliable)

Only for compaction/optimization
Small change implies days of debugging I

p. 10

Binary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

-

ON

Same problems:
- not retargetable
- not extensible

W o tons
o / UNI/ERSITE | |
Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 _

Engineering Sciences Faculty — Electronics and Information Systems Department

OM's evolution

OM mips
Srivastava9?

OM alpha
Srivastava94

OM

ATOM
Srivastava94

Spike NT
Cohn97

~ Spike Tru

p. 12

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

Alto's Evolution

Squeeze

- Squeeze++

7
//, /" UNIVERSITEIT
GENT

Binary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 13

static binary rewriting is useful...

- Optimization, compaction
- Instrumentation
- Obfuscation

- Program understanding, visualisation
- Debugging

but it is a bit problematic...

- Not retargetable
- Not extensible

L}
) | - Not reliable
7/, 1l
7)),/ UNIVERSITET

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 14

Overview

* Some background

* Diablo
— Extensibility
— Retargetability
— Reliability

AL O

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 15

+ More meta information

= more aggressive
transformations

- No program overview

UNIVERSITEIT
GENT

+ More meta information
+ Whole-program overview

- More implementation work

" Postlink

- Less meta information
= more conservative
transformations

+ Whole-program overview

——

Binary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 16

Extensibility — The problem

compactor

obfuss®g

instrumentator

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 17

ROFs

L

Reads object files
Links them
Writes a program

Analyses

/EN

liveness
constant propagation

Optimizations

dead code elimination
inlining

\ VAN
(
| .
9 nstructions) L CFG

/
)
/

Creates Instructions
Schedules Instructions

Creates functions
Removes Basic Blocks

p. 18

Binary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

Operation at different levels

/

(_linking)
[—

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 19
Engineering Sciences Faculty — Electronics and Information Systems Department

Extensibility
Application optimization and compaction fron
(LCTES'04]l

Instrumentation frontend

(PASTE'04)

Steganography frontend

(ICISC'04)

Linux kernel specialization frontend

(LCTES'05)]

Interactive binary program editor

(PASTE'05)]

Interactive program obfuscator

(PEPM'05)

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 20

Engineering Sciences Faculty — Electronics and Information Systems Department

Overview

* Some background

* Diablo
— Extensibility
— Retargetability
— Reliability

AL O

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 21

" Object
formats

Retargetability -
The problem

Linkers ; Architectures

UNIVERSITEIT
GENT

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 22
Engineering Sciences Faculty — Electronics and Information Systems Department

Operation at different levels

(_linking)

i Layout; assembling

UNIVERSITEIT
GENT

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 23
Engineering Sciences Faculty — Electronics and Information Systems Department

Retargeting multiple ROF & Linkers

Object file ' ~ Linkermap &
backend linker script
)

Architecture
Backend

Major implemented backends

ARM Diablo, FIT, kDiablo, Lancet (LCTES'04)

Diablo, FIT, Stilo, kDiablo, Lancet, Loco

(LCTES'05)

(Europar'04)

- MIPS32 Diablo
C)

ESA'04

~ Alpha Diablo, FIT l

Binary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 25

Overview

* Some background

* Diablo
— Extensibility
— Retargetability
— Reliability

AL O

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 26

L Conservative
for safety

Aggressive,
precise enough

\ to be useful

Reliability -
The Problem

p. 27

inary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11
gineering Sciences Faculty — Electronics and Information Systems Department

CFG Construction

Potential problems:

- Differentiate data from code
- Detect self-modifying code
- Detect unrewritable code

Solutions:

- Section information
- Symbols annotate data in code (ARM ABI)
- Self-modifying code in data:
no problem at this point
- True self-modifying code:
look at system calls and protection

Potential problems:

- Indirect control flow transfers
- Code that is treated as data
- Unrealizable paths (procedures)

Solutions:

- Use relocation information:
identifies computable addresses
- Use pattern matching:
identifies known address computations
- Use knowledge on compiler-generated code

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 28
Engineering Sciences Faculty — Electronics and Information Systems Department

Detecting Data

-

$code

$data

$code

0x0080:
0x0084:
0x0088:
0x008c:
0x0090:
0x0094:
0x0098:
0x009c:
0x00a0:
0x00a4:
0x00a8:
Ox00ac:
0x00bO0:
0x00b4:

mov r2, 0x0a0

cmp rl, $0
jl 0x0b4
cmp rl, 5
jge 0x0b4

add r1, r2, ri
1dr r1, [ri1]

jmp rl

0x00000120
0x0000012c
0x000000d0
0x00000248
0x00000210
mov r3, rb5

/

Solution:
add mapping symbols

@@ @ @ @ @ @ @ @ @ @ @ @@

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 29

e

$code

$data

$code

A

0x0080:
0x0084:
0x0088:
0x008c:
0x0090:
0x0094:
0x0098:
0x009c:
0x00a0:
0x00a4:
0x00a8:
Ox00ac:
0x00bO0:
0x00b4:

0x00d0:

0x0120:

mov r2, 0x0a0
cmp rl, $0

jl 0x0b4
cmp rl, 5
jge 0x0b4
add r1, r2, ri
1dr r1, [ri1]
jmp rl
0x00000120---------

0x0000012¢ ---------t1-1

0x000000d0 -~

0x00000248 1

0x00000210-----4--H-1

mov r3, rs +—$—+
add r4, r6, ré E

1dr r4, [r5]+"J

Detecting Control Flow Targets

\

-

Direct control flow:
trivial

Indirect control flow:
only to code-addresses
that are targets of
relocations!

Problem:
what about unrelocated
computations on code-

L addresses?

~

Vv

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty - Electronics and Information Systems Department

p. 30

Control Flow: Pattern Matching

e

$code

$data

$code

A

0x0080:
0x0084:
0x0088:
0x008c:
0x0090:
0x0094:
0x0098:
0x009c:
0x00a0:
0x00a4:
0x00a8:
Ox00ac:
0x00bO0:
0x00b4:

0x00d0:

0x0120:

\

~

mov r2, 0x0a0 4
cmp rl, $0 Use pattern matching to
J1l 0x0b4 improve accuracy of
cmp rl, S control flow graph:
jge 0x0b4 disallow computations on
add r1, r2, ri code-addresses that are
1dr r1, [ri] not part of a recognized
jmp ril pattern
0x00000120---------,
0x0000012¢ -]
0x000000d0----- i
0x00000248 11"
0x00000210 -4/
mov r3, r5 «———+-

LN
add r4, r6, ré §
1dr r4, [r5]«---- vy

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty - Electronics and Information Systems Department

p. 31

Pattern Matching: example

e

$code (0x0080:

0x0084:
0x0088:
0x008c:
0x0090:
0x0094:
0x0098:
0x009c:

$data 0x00

$code

A

mov r2, 0x0a0

cmp rl, $0
j1 0x0b4s ———

cmp
jge 0x0b4 ———
add r1, r2, ri1
1dr [r1] |
.

0x00000120 -~
0x0000012¢ -} L
0x000000d0 -+ |
0x00000248 -

0x00000210-----4--H-1

/switch statement:
[lower bounds check
—— upper bounds check
____switch jump

jump table
///J P

mov r3, rs +—$—+
add r4, r6, ré E

1dr r4, [r5]+"J

Vv

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty - Electronics and Information Systems Department

p. 32

Pattern Matching: example 2
/ R

$code OXOOSOE mov r2, 0x09c " switch statement 2:
0x0084: cmp rl, $0 address table is replaced

0x0088: jl 0xO0b4) | by 3 series of direct
0x008c: cmp rl, $5 jumps to the switch
0x0090: jge 0x0b4 cases.
0x0094: rl, r2, rl1
0x0098: rl unrecognized pattern!
0x009c: 0x0120
0x00a0: 0x012c .

Solution:
0x00a4: 0x00d0 .
0x00a8 : 0x0248 add pattern to Diablo
Ox00ac: 0x0210
0x00bO0:
0x00b4 :

r3, rS

6&60d0: add r4, r6, r6

0x0120: 1dr r4, [r5]

@ @@ @ @ @ @ @ @ @ @ @ @ @O

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 33

Engineering Sciences Faculty — Electronics and Information Systems Department

Procedure Calls and Returns

e

ARM indirect procedure call:

mov rl4, pc
mov pc, r2

ARM procedure return:
mov pc, rl4

or
1dr pc, [r13], #4

ldmia r13, {r4-r7,r15}!

A

\

-

Function calls and

returns are often just

“special” indirect jumps:
not recognizing them
makes the flow graph
much too conservative

Solution:
use pattern matching to
recognize them:
- rely on ABI
- rely on compiler
conventions

~

or \

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11

Engineering Sciences Faculty - Electronics and Information Systems Department

p. 34

Reliability -
The Problem

Reliability

Relocation

analysis

/ UNIVERSITEIT
GENT

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 35
Engineering Sciences Faculty — Electronics and Information Systems Department

Data flow analyses

Problem

- Difficult to analyse

- Necessary to improve precision

- Especially for C++-like languages
(calls through function pointers)

Solution

- rely on calling-conventions

- use symbol information

- use mapping symbols

- use source code information
- use stack unwind information

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 36

Calling conventio

extern int B(int x);

int A(int x)
{
return B(x);
}
B is unknown
call to B respects
- calling conventions

n adherence
int B(int x)
{

}

int C(int x)
{

}

return x * 2;

return B(x)*2;

—

\

C is known
but A is unknown
B respects
calling convention

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

7 UNIVERSITEIT

Calling convention adherence

static int B(int x)

{
return x * 2;
}
int C(int x)
{
return B(x)*2;
}

C is known

no unknown callers of B
B does not need to respect
calling convention

)

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 38

Calling convention adherence

extern int B(int x); B:
int A(int x) shl %ecx, #1
{ ret
int y;
asm(“
movl Y%ecx, x
call B
movl y, %ecx
");
return y;
}
even though B is global, the solution:
programmer has control over identify assembler code
all call sites through mapping symbols (for
e B does not need to adhere inline assembler) and object
i to calling conventions file header info

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

Reliability -
The Problem

Reliability

Relocation

analysis

/ UNIVERSITEIT
GENT

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 40
Engineering Sciences Faculty — Electronics and Information Systems Department

Relocation

Problem

- How to write a correct program?
- How to layout data?

- How to update pointers?

- How to update addresses?

Observation
- Most “strange” requirements come from
linker manipulations

Solution
- make relocations expressive
- make relocations first class objects
- let transformations update relocations
- use linker scripts

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 41

Overview

* Some background

* Diablo
— Extensibility
— Retargetability
— Reliability (no, really now)

PSSO

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11
Engineering Sciences Faculty — Electronics and Information Systems Department

p. 42

——— Conservative
for safety

Reliability -
The Real
Problem

Aggressive,
| precise enough
\ to be useful

inary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11 p. 43
ngineering Sciences Faculty - Electronics and Information Systems Department

Conservative
for safety

T
Reliability - N

The Real
Problem

Aggressive,
| precise enough
\ to be useful

Solution: limit most conservative
g assumptions to parts of program

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 44
Engineering Sciences Faculty — Electronics and Information Systems Department

Limit imprecision to some parts

4/, / UNIVERSITEIT
GENT

Binary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11 p. 45
Engineering Sciences Faculty — Electronics and Information Systems Department

Limit imprecision to some parts

4/, / UNIVERSITEIT
GENT

Binary Program Rewriting with Diablo - Bjorn De Sutter — 2006-6-11 p. 46
Engineering Sciences Faculty — Electronics and Information Systems Department

What program parts?

* Sections from object files
— only refer to each other via symbols

— special code addresses identified by
relocations

— extend relocations where necessary

* no relaxation
* annotate PIC code with relocations if necessary
* mark data

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 47
Engineering Sciences Faculty — Electronics and Information Systems Department

When/why does this work?

* Under separate compilation
— Partial-separate compilation

— Compiler-generated code only, not manually-written
assembler

* Compiler needs to maintain conventions

* Assembly writers do not know compiler-
generated code
— Because multiple compiler versions are available

* Whenever imprecision could become viral, the
linker (rewriter) is informed!

Binary Program Rewriting with Diablo - Bjorn De Sutter - 2006-6-11 p. 48
Engineering Sciences Faculty — Electronics and Information Systems Department

