
PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 1

Part 2:
Diablo Data Structures

● Goals
● Linker data structures
● Internal representation
● Construction of graphs
● Concrete Data Structures
● Manipulation
● Dynamic Members

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 2

Data Structures: Goal

Retargetable

Reliable

Extensible

Easy to manipulate

➔ abstract architecture specific
details

✔ CFG
✗ SSA

►model control flow conservatively
◄precise = not too conservative

➔ easy to augment basic data
structures with extra data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 3

Transition in small steps

Link Graph

Direct Control Flow and
Relocatable Address Graph

Augmented Whole Program
Control Flow Graph

Interprocedural
Control Flow Graph

Input Data Structures

Coarse-grained graph,enables linking
and unused section removal

Fine-grained graph, enables
unreachable code and data removal

= DCFRAG + special edges
Enables (flow)analysis of the program

Makes analysis of the program more
easy

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 4

Part 2:
Diablo Data Structures

● Goals
● Linker data structures
● Internal representation
● Construction of graphs
● Concrete Data Structures
● Manipulation
● Dynamic Members

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 5

Linker Data Structures: our input

● Most are simply an abstract representation of
data used by a linker:
– archives (containers of relocatable objects)
– relocatable objects (container of sections)
– section (containers of data)

● Interesting structures for Diablo:
– relocs (relocation information)
– symbols

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 6

● Represent every entity that can need relocating
– have an address and a size
– can be used in symbols and relocs
– can be changed by relocs

● e.g. sections are relocatable objects

Relocatable objects

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 7

● labeled address expression
– use the value of relocatable objects to calculate an

address
– example:

● symbol “offset_between_section_a_and_b_plus_10”
● code = “R01 R00 – A00 +$”

● used during symbol resolution
– order

● > means it overwrites other symbols
– can create data (e.g. bss)

Symbols

section a section b 10offset in a offset in b

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 8

Relocations

● use the address of relocatable objects and symbols
● to compute an address
● put it in the desired encoding
● write it somewhere in a relocatable object
● checks if relocation was successful (no overflow)

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 9

CHECK
(not used)COMPUTE ENCODE

Relocations

● Example
● for an instruction “load immediate pc relative” that

– loads the address of (an offset in) a relocatable object
– minus the address of a symbol
– plus some value (addend)
– and stores this address pc relative (instruction encoding)
– but automatically increases with the pc when executed

– “R00 S00 – A00 +” “\\” “P- l*w” “\\” “s0000” “$”

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 10

● Example
● for an instruction “load immediate pc relative” that

– loads the address of (an offset in) a relocatable object
– minus the address of a symbol
– plus some value (addend)
– and stores this address pc relative (instruction encoding)
– but automatically increases with the pc when executed

– “R00 S00 – A00 +” “\\” “P- l*w” “\\” “s0000” “$”

Relocations

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 11

● Example
● for an instruction “load immediate pc relative” that

– loads the address of (an offset in) a relocatable object
– minus the address of a symbol
– plus some value (addend)
– and stores this address pc relative (instruction encoding)
– but automatically increases with the pc when executed

– “R00 S00 – A00 +” “\\” “P- l*w” “\\” “s0000” “$”

Relocations

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 12

● Example
● for an instruction “load immediate pc relative” that

– loads the address of (an offset in) a relocatable object
– minus the address of a symbol
– plus some value (addend)
– and stores this address pc relative (instruction encoding)
– but automatically increases with the pc when executed

– “R00 S00 – A00 +” “\\” “P- l*w” “\\” “s0000” “$”

Relocations

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 13

● Example
● for an instruction “load immediate pc relative” that

– loads the address of (an offset in) a relocatable object
– minus the address of a symbol
– plus some value (addend)
– and stores this address pc relative (instruction encoding)
– but automatically increases with the pc when executed

– “R00 S00 – A00 +” “\\” “P- l*w” “\\” “s0000” “$”

Relocations

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 14

● Example
● for an instruction “load immediate pc relative” that

– loads the address of (an offset in) a relocatable object
– minus the address of a symbol
– plus some value (addend)
– and stores this address pc relative (instruction encoding)
– but automatically increases with the pc when executed

– “R00 S00 – A00 +” “\\” “P- l*w” “\\” “s0000” “$”

Relocations

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 15

● Example
● for an instruction “load immediate pc relative” that

– loads the address of (an offset in) a relocatable object
– minus the address of a symbol
– plus some value (addend)
– and stores this address pc relative (instruction encoding)
– but automatically increases with the pc when executed

– “R00 S00 – A00 +” “\\” “P- l*w” “\\” “s0000” “$”

Relocations

MARKERS

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 16

 TO FROM

Relocations

● Example
● for an instruction “load immediate pc relative” that

– loads the address of (an offset in) a relocatable object
– minus the address of a symbol
– plus some value (addend)
– and stores this address pc relative (instruction encoding)
– but automatically increases with the pc when executed

– “R00 S00 – A00 +” “\\” “P- l*w” “\\” “s0000” “$”

section a symbol 42offset in a section c offset in c

section b offset in b

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 17

bad_pointer: code = S00A00+...

Relocation subtleties

#include <stdio.h>

void v1()
{

printf("v1\n");
}
void v2()
{

printf("v2\n");
}
void (*pointer)() = v1;
int *bad_pointer = ((int *) v2) + 1;
int main(int argc, char ** argv)
{

pointer();
((void (*)()) (bad_pointer -1))();
return 0;

}

v1
 code = R00

.text 0

pointer: code = S00 A00+...

0

1

v2
 code = R00

.text 20

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 18

Relocation subtleties

.text
 code = R00

.text 0

bad_pointer: code = S00A00+...

pointer: code = S00 A00+...

0

21

#include <stdio.h>

void v1()
{

printf("v1\n");
}
void v2()
{

printf("v2\n");
}
void (*pointer)() = v1;
int *bad_pointer = ((int *) v2) + 1;
int main(int argc, char ** argv)
{

pointer();
((void (*)()) (bad_pointer -1))();
return 0;

}

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 19

Relocation subtleties

.text
 code = R00

.text 0x0

bad_pointer: code = S00A00+...

pointer: code = S00 A00+...

0

21

#include <stdio.h>

void v1()
{

printf("v1\n");
}
void v2()
{

printf("v2\n");
}
void (*pointer)() = v1;
int *bad_pointer = ((int *) v2) + 1;
int main(int argc, char ** argv)
{

pointer();
((void (*)()) (bad_pointer -1))();
return 0;

}
RELOCATIONS & SYMBOLS
SHOULD NOT BE RELAXED

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 20

Part 2:
Diablo Data Structures

● Goals
● Linker data structures
● Internal representation
● Construction of graphs
● Concrete Data Structures
● Manipulation
● Dynamic Members

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 21

Object file b

Object files

Relocation:
from code

to sym aptr
S00\l*w\s000$

Relocation:
from data
to sym a

S00\l*w\s000$

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Symbol aptr:
order 10
to data

R00$

Code

Symbol a:
order 0

to undefined
R00$

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 22

Object file b

Graph representation

Relocation:
from code

to sym aptr
S00\l*w\s000$

Relocation:
from data
to sym a

S00\l*w\s000$

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Symbol aptr:
order 10
to data

R00$

Code
Symbol a:

order 0
to undefined

R00$

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 23

Part 2:
Diablo Data Structures

● Goals
● Linker data structures
● Internal representation
● Construction of graphs
● Concrete Data Structures
● Manipulation
● Dynamic Members

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 24

EXE

Reading information

Entry

MAP

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 25

EXE

Reading information

Entry

MAP

.text 0x8048120 0x5e4d40
 .text 0x8048120 0x24 /usr/lib/crt1.o
 0x8048120 _start
 .text 0x8048144 0x22 /usr/lib/crti.o
 fill 0x8048166
 .text 0x8048170 0xc4 /usr/lib/crtbeginT.o
 fill 0x8048234
 .text 0x8048240 0x56f app_procs.o
 0x8048300 app_run
 0x80482a0 app_abort
 0x80482e0 app_exit
 0x8048240 app_libs_init
 fill 0x80487af
 .text 0x80487b0 0xf33 main.o
 0x80487b0 main

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 26

Object file b

EXE

Object file a

Reading information

Relocation:
from code

to sym aptr
S00\l*w\s000$

Relocation:
from data
to sym a

S00\l*w\s000$

Relocation:
from code

to sym array
S00\l*w\s000$

Entry

Data

Symbol a:
order 10
to code

R00$

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Symbol aptr:
order 10
to data

R00$

Symbol array:
order 10
to data

R00$

Code

Code

Symbol a:
order 0

to undefined
R00$

MAP

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 27

Object file b

EXE

Object file a

Reading information

Relocation:
from code

to sym aptr
S00\l*w\s000$

Relocation:
from data
to sym a

S00\l*w\s000$

Relocation:
from code

to sym array
S00\l*w\s000$

Entry

Data

Symbol a:
order 10
to code

R00$

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Symbol aptr:
order 10
to data

R00$

Symbol array:
order 10
to data

R00$

Code

Code

Symbol a:
order 0

to undefined
R00$

MAP

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 28

Reading information

Relocation:
from code

to sym aptr
S00\l*w\s000$

Relocation:
from data
to sym a

S00\l*w\s000$

Relocation:
from code

to sym array
S00\l*w\s000$

Entry

Data

Symbol a:
order 10
to code

R00$

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Symbol aptr:
order 10
to data

R00$

Symbol array:
order 10
to data

R00$

Code

Code

Symbol a:
order 0

to undefined
R00$

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 29

Symbol Resolution

Relocation:
from code

to sym aptr
S00\l*w\s000$

Relocation:
from data
to sym a

S00\l*w\s000$

Relocation:
from code

to sym array
S00\l*w\s000$

Entry

Data

Symbol a:
order 10
to code

R00$

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Symbol aptr:
order 10
to data

R00$

Symbol array:
order 10
to data

R00$

Code

Code

Symbol a:
order 0

to undefined
R00$

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 30

Symbol Resolution

Relocation:
from code

to sym aptr
S00\l*w\s000$

Relocation:
from data
to sym a

S00\l*w\s000$

Relocation:
from code

to sym array
S00\l*w\s000$

Entry

Data

Symbol a:
order 10
to code

R00$

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Symbol aptr:
order 10
to data

R00$

Symbol array:
order 10
to data

R00$

Code

Code

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 31

Linkgraph

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Relocation:
from code

to data
R00\l*w\s000$

Entry

Data

Symbol a:
order 10
to code

R00$

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Symbol aptr:
order 10
to data

R00$

Symbol array:
order 10
to data

R00$

Code

Code

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 32

Code

Code

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Linkgraph

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Entry

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 33

Uses of the linkgraph

✔ Linking (placing sections, relocating)
✔ Apply linker optimizations (remove unused

sections)

✗ fine-grained transformations

➔ Need for a more fine-grained graph: DCFRAG
Direct Control Flow and Relocatable Addresses

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 34

Code

Code

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Linkgraph

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Entry

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 35

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Disassembler

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Entry

Bbl

Bbl

Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 36

Disassembler

● Disassemble

– Architecture independent analyses and
optimizations work on architecture independent part
 or use callbacks

Architecture independent
- instruction type (jump, cmp, ...)
- conditional?
- register lists (used, defined)

Instruction

Architecture dependent
- backend decides
- opcode
- regs

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 37

Detect basic blocks

● Disassemble
● Split sections into basic blocks

Linked list of instructions
Type (for special block)

Basic Block

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 38

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Detect basic blocks

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Entry

Bbl

Bbl

Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 39

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Detect basic blocks

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Entry

Bbl

Bbl

Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 40

Detect basic blocks

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Entry

Bbl

Bbl

Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 41

Detect basic blocks

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Entry

Bbl

Bbl

Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 42

Detect basic blocks

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl
Bbl

Bbl

Bbl

Bbl

Bbl

Entry

Bbl

Bbl

Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 43

Detect basic blocks

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Entry

Bbl

Bbl Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 44

Add edges

● Disassemble
● Split sections into basic blocks

– Targets direct jumps + successors conditional
jumps

– To's of relocs
– analyze switches (computed) to find switch targets

● Add direct control flow edges and switch edges

Connector for two basic blocks
Type (jump, ft, call, return, ...)

Edge

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 45

Add edges

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Entry

Bbl

Bbl Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 46

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Add edges: direct jumps

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Entry

Bbl

Bbl Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 47

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Add edges: fall-through paths

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Bbl

Entry

Bbl

Bbl Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 48

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Add edges: system calls

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Bbl

Bbl

Sys

Bbl

Bbl

Bbl

Entry

Bbl

Bbl Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 49

Partition the code into functions

- Name
- list of basic blocks
- register lists (used, defined, ...)

Function

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 50

Symbol a:
order 10
to code

R00$

Relocation:
from code

to data
R00\l*w\s000$

Partition the code into functions

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Bbl

Bbl

Sys

Bbl

Bbl

Bbl

Entry

Bbl

Bbl Bbl

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 51

Function a

Partition the code into functions

Function _start

Function syscall hell

Function program_entry

Function b

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Return

Bbl

Bbl

Sys

Bbl

Bbl

Bbl

Entry

Data

Relocation:
from code

to data
R00\l*w\s000$

Bbl

Bbl Bbl

Return

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

Symbol a:
order 10
to code

R00$

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 52

Function calleeFunction caller

Function Calls

BblBbl

Bbl

Bbl

Return

Bbl

Return

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 53

Function calleeFunction caller

Interprocedural Goto's

BblBbl

Bbl

Return

Bbl

Return

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 54

Function a

DCFRAG

Function _start

Function syscall hell

Function program_entry

Function b

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Return

Bbl

Bbl

Sys

Bbl

Bbl

Bbl

Entry

Data

Relocation:
from code

to data
R00\l*w\s000$

Bbl

Bbl Bbl

Return

Bbl

Bbl

Symbol b:
order 10
to code

R00$

Symbol _start:
order 10
to code

R00$

Data

Data

Symbol a:
order 10
to code

R00$

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 55

Function a

DCFRAG

Function _start

Function syscall hell

Function program_entry

Function b

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Return

Bbl

Bbl

Sys

Bbl

Bbl

Bbl

Entry

Data

Relocation:
from code

to data
R00\l*w\s000$

Bbl

Bbl Bbl

Return

Bbl

Bbl

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 56

Uses of the DCFRAG

✔ Fine grained removal of unused code and data

✗ Dataflow

➔ We need a graph for data flow analyses (ICFG)

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 57

Function a

DCFRAG

Function _start

Function syscall hell

Function program_entry

Function b

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Return

Bbl

Bbl

Sys

Bbl

Bbl

Bbl

Entry

Data

Relocation:
from code

to data
R00\l*w\s000$

Bbl

Bbl Bbl

Return

Bbl

Bbl

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 58

Relocation:
from code

to data
R00\l*w\s000$

Function a

Augmented Whole-Program CFG

Function _start

Function syscall hell

Function program_entry

Function hell

Function b

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Return

Hell

Bbl

Bbl

Sys

Bbl

Bbl

Bbl

Entry

Bbl

Bbl Bbl

Return

Bbl

Bbl

Return

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 59

Function a

ICFG

Function _start

Function syscall hell

Function program_entry

Function hell

Function b

Bbl

Bbl

Bbl

Return

Hell

Bbl

Bbl

Sys

Bbl

Bbl

Bbl

Entry

Bbl

Bbl Bbl

Return

Bbl

Bbl

Return

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 60

Uses of the ICFG

✔ Good for analysis and transformations

✗ Bad for writing out the program

➔ Use the combined ICFG + DCFRAG =
AWPCFG

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 61

Relocation:
from code

to data
R00\l*w\s000$

Function a

AWPCFG

Function _start

Function syscall hell

Function program_entry

Function hell

Function b

Relocation:
from code

to data
R00\l*w\s000$

Relocation:
from data
to code

R00\l*w\s000$

Bbl

Bbl

Bbl

Return

Hell

Bbl

Bbl

Sys

Bbl

Bbl

Bbl

Entry

Bbl

Bbl Bbl

Return

Bbl

Bbl

Return

Data

Data

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 62

Part 2:
Diablo Data Structures

● Goals
● Linker data structures
● Internal representation
● Construction of graphs
● Concrete Data Structures
● Manipulation
● Dynamic Members

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 63

Concrete Data Structures

t_relocatable

t_symbol

t_reloc_ref

t_symbol_table

t_reloct_reloc_table

t_ins

t_bbl

t_section t_cfg

t_object

t_arm_ins

t_i386_ins

t_symbol_ref

t_cfg_edge

t_ppc_ins

t_function

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 64

Accessing fields

● With getters and setters

● t_bbl * head = CFG_EDGE_HEAD(cfg_edge)

● ARM_INS_SET_REGA(arm_ins, reg)

● Reason: Dynamic Members

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 65

Iterating the ICFG

● t_cfg * cfg; t_function * fun; t_bbl * bbl; t_ins *
ins; t_cfg_edge * edge;

● CFG_FOREACH_FUNCTION(cfg, fun)
– FUNCTION_FOREACH_BBL(fun, bbl)

● CFG_FOREACH_BBL(cfg, bbl)
● BBL_FOREACH_INS(bbl, ins)
● BBL_FOREACH_SUCC_EDGE(bbl, edge)
● BBL_FOREACH_PRED_EDGE(bbl, edge)

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 66

Part 2:
Diablo Data Structures

● Goals
● Linker data structures
● Internal representation
● Construction of graphs
● Concrete Data Structures
● Manipulation
● Dynamic Members

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 67

Primitive Transformations

● Relocations
– Add: RelocTableAddRelocToRelocatable
– Remove: RelocTableRemoveReloc
– Modify: RelocSetFrom, RelocSetToRelocatable

● Sections
– Create: SectionCreateForObject

● Functions
– Create: FunctionMake
– Remove: FunctionKill

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 68

Primitive Transformations

● Basic blocks
– Create: BblNew
– Remove: BblKill
– Duplicate: BblDup
– Split: BblSplitBlock

● ICFG edges
– Create: CfgEdgeCreate
– Remove: CfgEdgeKill

● Instructions
– Create: InsNewForBbl
– Remove: InsKill

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 69

On the DCFRAG

● SECTION_REFED_BY(sec)
● SECTION_REFERS_TO(sec)

● BBL_REFED_BY(bbl)
● BBL_REFED_BY_SYM(bbl)

● INS_REFERS_TO(ins)

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 70

Consistency of the AWPCFG

● Manipulate one view, what happens on other?

● Diablo tries to keep things consistent
– Kill reloc, and its ICFG-edge is also killed
– Kill ins, and to-relocs are also killed
– Remove a section, and all to-relocs are also killed

● Makes sure that you do the proper thing
– Try to kill an object with refers_to relocs, and it fatals

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 71

Part 2:
Diablo Data Structures

● Goals
● Linker data structures
● Internal representation
● Construction of graphs
● Concrete Data Structures
● Manipulation
● Dynamic Members

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 72

Dynamic Members

● Diablo needs to be extensible

● Many analyses compute different kinds of
information on very large data sets

● We cannot include all of them in the main
libraries, or even store all information together

● Dynamic members augment basic data
structures with members that can be allocated
on the fly

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 73

Dynamic Members

● Example: member for reachability

– t_bool BBL_REACHABLE(t_bbl)
– BBL_SET_REACHABLE(t_bbl, t_bool)
– BblInitReachable(t_cfg *)

● Allocates space for this field and calls init callback for
each bbl

– BblFiniReachable(t_cfg *)
● Calls fini callback and deallocates space

PLDI 06 Tutorial - Binary Rewriting with Diablo - part 2 74

Dynamic Members

To instantiate the member:

DYNAMIC_MEMBER(
 bbl, /* data structure to extend */
 t_cfg *, /* manager type */
 bbl_reachable_array, /* array to hold members */
 t_bool, /* the type of the member */
 reachable, /* lowercase name */
 REACHABLE, /* UPPERCASE name */
 Reachable, /* CamelCase name*/
 CFG_FOREACH_BBL, /* iterator */
 BblReachableInitCb, /* init callback*/
 BblReachableFiniCb, /* fini callback */
 BblReachableDupCb, /* dup callback */
);

